Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

modification of drastic model to map groundwater vulnerability to pollution using nitrate measurements in agricultural areas

drastic model has been used to map groundwater vulnerability to pollution in many areas. since this method is used in different places without any changes, it cannot consider the effects of pollution type and characteristics. therefore, the method needs to be calibrated and corrected for a specific aquifer and pollution. in the present research, the rates of drastic parameters have been correct...

متن کامل

Aquifer Vulnerability Assessment for Sustainable Groundwater Management Using DRASTIC

Groundwater management and protection has been facilitated by computational modeling of aquifer vulnerability and monitoring aquifers using groundwater sampling. The DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of vadose zone media, and hydraulic Conductivity) model, an overlay and index GIS model, has been used for groundwater quality assessment because it r...

متن کامل

groundwater vulnerability assessment using gis-based drastic model in the bazargan and poldasht plains

bazargan and poldasht plains are located in the north of west azarbaijan, northwest of iran. in this area, groundwater supplies main water demands. aim of this research is assessment of aquifer vulnerability for contamination potential on the basis of hydrogeological conditions of the study area. for this purpose the combined use of the drastic and geographical information system (gis) demonstr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Environmental Earth Sciences

سال: 2013

ISSN: 1866-6280,1866-6299

DOI: 10.1007/s12665-013-2690-7